
ros

ros ii

COLLABORATORS

TITLE :

ros

ACTION NAME DATE SIGNATURE

WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ros iii

Contents

1 ros 1

1.1 ros.doc . 1

1.2 ros.library/Overview (information) . 2

1.3 ros.library/History (information) . 4

1.4 ros.library/ROSAddTimerInt() . 4

1.5 ros.library/ROSAllocAudio() . 5

1.6 ros.library/ROSAllocMem() . 6

1.7 ros.library/ROSAwakeSystem() . 7

1.8 ros.library/ROSChipsetCheck() . 8

1.9 ros.library/ROSCPUCheck() . 8

1.10 ros.library/ROSCPUClock() . 9

1.11 ros.library/ROSDeleteFile() . 9

1.12 ros.library/ROSDisableReq() . 11

1.13 ros.library/ROSEnableReq() . 11

1.14 ros.library/ROSFreeAudio() . 11

1.15 ros.library/ROSFreeMem() . 12

1.16 ros.library/ROSGetDMA() . 13

1.17 ros.library/ROSGetInt() . 13

1.18 ros.library/ROSGetKey() . 14

1.19 ros.library/ROSKillSystem() . 15

1.20 ros.library/ROSQueryKeys() . 16

1.21 ros.library/ROSReadExe() . 17

1.22 ros.library/ROSReadFile() . 18

1.23 ros.library/ROSRemTimerInt() . 19

1.24 ros.library/ROSRequester() . 20

1.25 ros.library/ROSScreenToBack() . 21

1.26 ros.library/ROSScreenToFront() . 21

1.27 ros.library/ROSSetCache() . 22

1.28 ros.library/ROSSetCopper() . 22

1.29 ros.library/ROSSetDMA() . 23

ros iv

1.30 ros.library/ROSSetExitHandler() . 24

1.31 ros.library/ROSSetInt() . 25

1.32 ros.library/ROSSetIntVec() . 26

1.33 ros.library/ROSSetTimerVec() . 28

1.34 ros.library/ROSStartTimer() . 29

1.35 ros.library/ROSStopTimer() . 29

1.36 ros.library/ROSSysCall() . 30

1.37 ros.library/ROSSysCallEnd() . 31

1.38 ros.library/ROSWaitVBlank() . 32

1.39 ros.library/ROSWriteFile() . 32

ros 1 / 33

Chapter 1

ros

1.1 ros.doc

ros.library

Overview

History

AddTimerInt()

ROSAddTimerInt()

ROSAllocAudio()

ROSAllocMem()

ROSAwakeSystem()

ROSChipsetCheck()

ROSCPUCheck()

ROSCPUClock()

ROSDeleteFile()

ROSDisableReq()

ROSEnableReq()

ROSFreeAudio()

ROSFreeMem()

ROSGetDMA()

ROSGetInt()

ROSGetKey()

ros 2 / 33

ROSKillSystem()

ROSQueryKeys()

ROSReadExe()

ROSReadFile()

ROSRemTimerInt()

ROSRequester()

ROSScreenToBack()

ROSScreenToFront()

ROSSetCache()

ROSSetCopper()

ROSSetDMA()

ROSSetExitHandler()

ROSSetInt()

ROSSetIntVec()

ROSSetTimerVec()

ROSStartTimer()

ROSStopTimer()

ROSSysCall()

ROSSysCallEnd()

ROSWaitVBlank()

ROSWriteFile()

1.2 ros.library/Overview (information)

This section describes the way how to use the RETIRE Operating System within
your own applications:

The ros.library is an enhanced lowlevel.library. It’s compatible with currently
all available machines and CPU’s (upto ’060) and OS1.3 compatible too!
The ROS provides additional functions to take over the entire system so it
should be useful for demo & game coders.
Another advantage is the ability to call important system functions (memory
allocation, read, write) from a killed system.

ros 3 / 33

ROS offers a way to run your hardware bashing application within multitasking.
And finally a ROS prefs file is provided to support custom settings.
On startup ROS tries to load the ROS.prefs from your ENV: directory. You may
edit this file to configure the library for your needs.

But remember: It’s impossible to open the ros.library from two applications at
the same time. The second application will fail to open the library!

Programming guidelines:

The ros.library is a standard Amiga library so normal restrictions applies to
function calls: - a6 loaded with _ROSBase

- d0/d1/a0/a1 scratch registers (destroyed by libcall)
- functions can’t be called from within interrupts

Some ROS functions are special in these cases; they need no scratch registers
or they may be called from within interrupts. Look at the appropriate ’note’
comment for further information.

Do not call any ROS function from supervisor mode. The machine will crash!!!
I think there is no need to switch to supervisor mode. Think of the ’060 CPU;
its supervisor model differs from the ’040 CPU and a few basic commands will be
emulated by software. Executing such a command from supervisor mode may crash
the machine!!!

Call ROSKillSystem(ROSKSF_DEATHMODE) to take over the entire system. But do not
modify DMA & interrupt stuff by yourself! Use the appropriate ROS routines!!!!!
ROSKillSystem() opens a PAL-LowRes screen so all ’special’ AGA registers are
flushed (FMODE may not!?!) and it forces graphics boards to switch to the Amiga
custom chip display.

After taking over the system you may use the blitter. You should finish your
blits before calling ROS functions which may invoke system calls. After the
function returns you may bash the blitter again.
Remember: Use a WaitBlit before freeing some chip memory!!!

In a multitasking environment your vblank code may be called after the display
is started depending on the speed of higher prioritized vblank interrupts.
If you want to synchronize custom chip modifications with the display you
should use the copper.
And remember: The vblank frequency may vary (not always 50 Hz) if ROS screen
behind other screens!

The registers you may trash:
- the display custom chip registers after taking over the system, in multi-

tasking mode only if the ROS screen is the frontmost
- the audio custom chip registers (if channels allocated)
- the blitter registers (only if taken over the system)
- the CIA registers (if successfully allocated)

You should never touch:
- DMACON and INTENA registers
- CIA ICR registers
- CPU interrupt vectors
- serial registers
- disk related registers

Please read the following autodocs carefully!

ros 4 / 33

If you have questions, problems, idea’s or bug reports feel free to contact me:

TIK/RETIRE via email: Nico.Schmidt@Student.Uni-Magdeburg.de

or write to: Nico Schmidt
Möhlauer Str. 9
06773 Jüdenberg
GERMANY

Thanks to: TODI/RETIRE for hints and useful idea’s
PABLO/RETIRE for beta testing

1.3 ros.library/History (information)

ROS HISTORY

RELEASE 1.0, 29.12.95 (Library version 1.0)

The first release.

RELEASE 1.1, 05.01.96 (Library version 1.1)

Fixed two minor bugs:
- ROSCPUClock() shouldn’t display a requester if no free CIA available,

but it does
- user vblank code was called from vblank server with priority 9, this

may confuse the timer.device (priority 0) and thus all CIA interrupts
(e.g. level6 p61) if it steals to much rastertime;
now user vblank code is executed from a priority 0 vblank server

RELEASE 1.2, 08.01.96 (Library version 1.2)

Library name changed from ’ROS.library’ to ’ros.library’ because a library
name should always be a lower-case string (thanks to Thomas Kessler)

1.4 ros.library/ROSAddTimerInt()

NAME
ROSAddTimerInt -- add an interrupt that is executed at regular

intervals

SYNOPSIS
intHandle = ROSAddTimerInt(Flags, intRoutine);
D0 D0 A0

ULONG AddTimerInt(ULONG, APTR);

ros 5 / 33

FUNCTION
Calling this routine causes the system to allocate a CIA timer
depending on ’Flags’ and set up ’intRoutine’ to service any interrupts
caused by the timer.
Although the timer is allocated it is neither running, nor enabled.

ROSStartTimer()
must be called to establish the time interval and

start the timer.

The routine is called from within an interrupt, so normal
restrictions apply. On entry A5 holds the custom base ($dff000) and
A6 holds _ROSBase. Your code may trash all registers.

The CIA timer used by this routine is not guaranteed to always be
the same. This routine utilizes the CIA resource and uses an
unallocated CIA timer.

You should remove the timer with
ROSRemTimerInt()
.

Closing the ros.library removes this timer interrupt automatically.

INPUTS
Flags - specify the timer to allocate:

TIMF_ANY - try to allocate any timer
TIMF_LEV2 - try to allocate level 2 timers (CIA A)
TIMF_LEV6 - try to allocate level 6 timers (CIA B)

intRoutine - the routine to invoke upon timer interrupts.

RESULT
intHandle - a handle used to manipulate the interrupt, or NULL

if it was not possible to attach the routine.

NOTE
If allocation failed a Retry/Cancel-Requester appears to inform the
user about the problem (if not suppressed and if not in Death-Mode).

This function interrupts the Death-Mode state with
ROSSysCall()
!

SEE ALSO

ROSRemTimerInt()
,
ROSStartTimer()
,
ROSStopTimer()
,
ROSSetTimerVec()

1.5 ros.library/ROSAllocAudio()

ros 6 / 33

NAME
ROSAllocAudio -- allocate audio channels

SYNOPSIS
success = ROSAllocAudio()
D0

BOOL ROSAllocAudio(VOID);

FUNCTION
This function allocates all audio channels. Audio DMA is updated
so that matches with current DMA settings (former

ROSSetDMA()
calls).

You should free the audio channels with
ROSFreeAudio()
.

Closing the ros.library frees audio channels automatically.

RESULT
success - boolean

NOTE
If allocation failed a Retry/Cancel-Requester appears to inform the
user about the problem (if not suppressed and if not in Death-Mode).

This function interrupts the Death-Mode state with
ROSSysCall()
!

SEE ALSO

ROSFreeAudio()

1.6 ros.library/ROSAllocMem()

NAME
ROSAllocMem -- allocate memory and keep track of the size

SYNOPSIS
memoryBlock = ROSAllocMem(byteSize, attributes, alignmask)
D0 D0 D1 D2

VOID *ROSAllocMem(ULONG, ULONG, ULONG);

FUNCTION
This function works identically to Exec’s AllocMem(), but tracks the
size of the allocation and provides additional memory alignment.

See the AllocMem() documentation for details.

You should free the memory with

ros 7 / 33

ROSFreeMem()
.

Do _not_ use exec.library functions!!!!!!!
Closing the ros.library frees allocated memory automatically.

INPUTS
byteSize - # of bytes to allocate
attributes - memory requirements
alignmask - used to allocate memory at special boundaries, if NULL

Exec’s standard alignment applies

--> newaddr = memaddr AND NOT(alignmask)
e.g. mem align: even by 8 bytes -> alignmask = $00000007

RESULT
memoryBlock - a pointer to the newly allocated memory block or NULL

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

SEE ALSO

ROSFreeMem()
, exec.lib/AllocMem()

1.7 ros.library/ROSAwakeSystem()

NAME
ROSAwakeSystem -- close ROS screen and awake from Death-Mode

SYNOPSIS
ROSAwakeSystem()

VOID ROSAwakeSystem(VOID);

FUNCTION
This function deallocates all things allocated with

ROSKillSystem()
.

It closes the opened screen and sets the display related DMA to the
appropriate system values.
Calling this function without a matching

ROSKillSystem()
is harmless.

Closing the ros.library calls automatically ROSAwakeSystem().

SEE ALSO

ROSKillSystem()

ros 8 / 33

1.8 ros.library/ROSChipsetCheck()

NAME
ROSChipsetCheck -- check if desired custom chipset available

SYNOPSIS
result = ROSChipsetCheck(chipsetbit)
D0 D0

UWORD ROSChipsetCheck(UWORD);

FUNCTION
Use this routine to obtain the available chipset.
As input you may specify the chipset requirement (bitnumber) and if
not found a requester appears to inform the user about his lack of
hardware (if not suppressed and if not in Death-Mode).

INPUTS
chipsetbit - the required chipset; currently defined are

ROSCSB_ECS for at least HR-AGNUS rev3 and 8373 DENISE
ROSCSB_AGA for at least ALICE rev2 and LISA,

or -1 for only obtaining chipset (no requester appears)

RESULT
result - chipset flags (ROSCF_xxx, AGA includes the ECS flag) or NULL

if required chipset not found

1.9 ros.library/ROSCPUCheck()

NAME
ROSCPUCheck -- check if desired CPU/FPU available

SYNOPSIS
result = ROSCPUCheck(cpubit)
D0 D0

UWORD ROSCPUCheck(UWORD);

FUNCTION
Use this routine to obtain the available CPU/FPU.
As input you may specify the processor requirement (bitnumber) and if
not found a requester appears to inform the user about his hardware
problem (if not suppressed and if not in Death-Mode).
Call this routine twice if you need a CPU (AFB_680x0) check and a FPU
(AFB_6888x/FPU40) check.

INPUTS
cpubit - the required CPU/FPU -> AttnFlags AFB_xxxxx

or -1 for only obtaining CPU/FPU (no requester appears)

RESULT
result - AttnFlags or NULL if required chipset not found

ros 9 / 33

NOTE
This code handles the FPU40 flag correct: it’s only valid if AFB_68040
set. Keep this in mind if you examine the RESULT (AttnFlags)!!!

1.10 ros.library/ROSCPUClock()

NAME
ROSCPUClock -- CPU/FPU clock calculation

SYNOPSIS
CPU/FPUclock = ROSCPUClock()
D0 D1

ULONG/ULONG ROSCPUClock(VOID);

FUNCTION
Calculate CPU/FPU clock. The values returned should be accurate at
least 1/10 MHz, so it’s enough for everyone.
This routine works with all (currently) available processors and it
takes only a few milliseconds!!!
In some cases the returned clock is NULL because of the lack of
free CIA timers (or other problems, see BUGS) so it’s best to call
this routine first (e.g. before any timer function).

RESULT
CPUclock - the CPU clock in kHz or NULL on error (see also BUGS)
FPUclock - the FPU clock in kHz or NULL on error

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

BUGS
In some rare cases the function returns NULL:
- on 68000/10 with only chipmem
- on _really_ slow machines (e.g. a 10MHz 68040?!?)
- on 68040/60 systems where it’s impossible to turn on instruction

cache (e.g. A4000 with only chipmem and 68040.library loaded)

The FPU clock is _always_ NULL for 68881/2 systems because I’m
(currently) unable to find a reliable algorithm (blame on me).
It’s hard to deal with the asynchronous data transfer between CPU
and FPU.
On 68040/60 systems with FPU the returned value is the same like
CPU clock.

1.11 ros.library/ROSDeleteFile()

ros 10 / 33

NAME
ROSDeleteFile -- Delete a file or directory

SYNOPSIS
success = ROSDeleteFile(flags, name)
D0 D0 A0

ULONG ROSDeleteFile(ULONG, STRPTR);

FUNCTION
This attempts to delete the file or directory specified by ’name’.
Note that all the files within a directory must be deleted before the
directory itself can be deleted.

If ROSRWF_DISKWAIT flag set the routine assumes that you want to delete
’name’ from a floppy. This means:
- waiting for the disk to be inserted (can’t be cancelled!!!)

(implementation: DOS error codes DEVICE_NOT_MOUNTED, NOT_A_DOS_DISK,
NO_DISK force retry until any other error occurs)

- waiting until disk drive stopped
(implementation: polling disk.resource until drives are ready)

Since OS2.0 it’s possible to delete files from your program path
instead of the current directory using PROGDIR:xxx.
On OS1.3 the "PROGDIR:" string is automatically removed by ROS so you
don’t have to worry about it. The only thing the user have to do is a
"CD" to the program directory before starting (only on OS1.3). ;-)

WARNING: It may be dangerous to use this routine within Death-Mode!
Because of the AMIGA’s multitasking facilities it isn’t
possible (isn’t it???) to wait till the final end of a delete
operation. That’s why I use a simple delay of 2 seconds after
any delete operation in Death-Mode. If your filesystem is to
slow to write all the data within this time your partition
will be _not_ validated!!!
You’ve been warned!!!

INPUTS
flags - use ROSRWF_DISKWAIT if you want to delete from a floppy
name - pointer to a null-terminated string

RESULT
success - DOS error code on failure or NULL for success

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

SEE ALSO
DOS.lib/DeleteFile()

ros 11 / 33

1.12 ros.library/ROSDisableReq()

NAME
ROSDisableReq -- suspend requesters for our task

SYNOPSIS
ROSDisableReq()

VOID ROSDisableReq(VOID);

FUNCTION
Suspend all upcoming requesters for our task (ROS- and DOS-Requesters).
By default requesters are enabled.

SEE ALSO

ROSEnableReq()
,
ROSRequester()

1.13 ros.library/ROSEnableReq()

NAME
ROSEnableReq -- permit requesters for our task

SYNOPSIS
ROSEnableReq()

VOID ROSEnableReq(VOID);

FUNCTION
Permit all upcoming requesters for our task (ROS- and DOS-Requesters).
By default requesters are enabled.

SEE ALSO

ROSDisableReq()
,
ROSRequester()

1.14 ros.library/ROSFreeAudio()

NAME
ROSFreeAudio -- free audio channels

SYNOPSIS
ROSFreeAudio()

VOID ROSFreeAudio(VOID);

ros 12 / 33

FUNCTION
This function removes probably installed audio interrupt handlers and
resets the audio DMA (former system values). Then channels are freed.

Freeing channels without allocation is harmless.

Closing the ros.library frees audio channels automatically.

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

SEE ALSO

ROSAllocAudio()

1.15 ros.library/ROSFreeMem()

NAME
ROSFreeMem -- return allocated memory to the system

SYNOPSIS
ROSFreeMem(memoryBlock)

A0

VOID ROSFreeMem(VOID *);

FUNCTION
Free an allocation made by the

ROSAllocMem()
call. The memory will be

returned to the system pool from which it came.

WARNING: Before freeing some chip memory be sure that the blitter has
finished its work within this memory block!!!
The same applies to closing the ros.library.

Closing the ros.library frees allocated memory automatically.

NOTE
Passing a wrong pointer is harmless ;-)

This function interrupts the Death-Mode state with
ROSSysCall()
!

INPUTS
memoryBlock - pointer to the memory block to free, or NULL

SEE ALSO

ROSAllocMem()

ros 13 / 33

1.16 ros.library/ROSGetDMA()

NAME
ROSGetDMA -- obtain DMA settings

SYNOPSIS
DMACONR = ROSGetDMA()
D0

UWORD ROSGetDMA(VOID);

FUNCTION
This function returns current DMA settings (set via

ROSSetDMA()
).

Do _not_ use "move.w $dff002,d0" !!!!!!!
This may return wrong bits if you are in Non-Death-Mode (e.g. copper
DMA -> the OS may change the bit during screen switching).
But ROSGetDMA() returns the right value.

Closing the ros.library reset former system DMA.

RESULT
DMACONR - DMA settings set via

ROSSetDMA()
with additional BBUSY/BZERO
bits (unsupported (disk) & unallocated (audio, ...) DMA bits
are always 0)

NOTE
This call is guaranteed to preserve all other registers and is save
to call from interrupts.

SEE ALSO

ROSSetDMA()

1.17 ros.library/ROSGetInt()

NAME
ROSGetInt -- obtain interrupt settings

SYNOPSIS
INTENAR = ROSGetInt()
D0

UWORD ROSGetInt(VOID);

ros 14 / 33

FUNCTION
This function returns interrupt enable bits (set via

ROSSetDMA()
).

Additional bits are defined in "ros.i".

Do _not_ use "move.w $dff01c,d0" !!!!!!! This may return wrong bits.

Closing the ros.library reset former system interrupt bits.

RESULT
INTENAR - Interrupt bits set via

ROSSetInt()
Note: level 1/2/5/6 bits (disk, serial, timer) ←↩

are not
supported!!!
Instead additonal bits are defined: - KEYB

- CIAATIMA/B
- CIABTIMA/B

NOTE
This call is guaranteed to preserve all other registers and is save
to call from interrupts.

SEE ALSO

ROSSetInt()
, libraries/ros.i

1.18 ros.library/ROSGetKey()

NAME
ROSGetKey -- returns the currently pressed rawkey code and qualifiers

SYNOPSIS
key = ROSGetKey()
D0

ULONG ROSGetKey(VOID);

FUNCTION
This function returns the currently pressed non-qualifier key and
all pressed qualifiers.

The values returned by this function are not modified by which
window/screen currently has input focus.

RESULT
key - key code for the last non-qualifier key pressed in the low

order word ($0..$67). If no key is pressed this word will be $ff.
The upper order word contains the qualifiers which can be found
within the long word as follows (lowlevel.library like):

Qualifier Key

ros 15 / 33

LLKB_LSHIFT Left Shift
LLKB_RSHIFT Rigt Shift
LLKB_CAPSLOCK Caps Lock
LLKB_CONTROL Control
LLKB_LALT Left Alt
LLKB_RALT Right Alt
LLKB_LAMIGA Left Amiga
LLKB_RAMIGA Right Amiga

NOTE
This call is guaranteed to preserve all other registers and is save
to call from interrupts.

SEE ALSO
lowlevel.lib/GetKey(), libraries/lowlevel.i

1.19 ros.library/ROSKillSystem()

NAME
ROSKillSystem -- kill the system and open a PAL-LowRes screen

SYNOPSIS
success = ROSKillSystem(mode)
D0 D0

BOOL ROSKillSystem(ULONG);

FUNCTION
This function opens a PAL-LowRes screen, installs your copper list and
sets additional DMA (copper, bitplane, sprite).
By default all DMA will be cleared.
Whenever this screen is the frontmost you may bash all display related
custom chip registers (preferably via copper list).
If the ROS is unable to open the screen or if it’s not PAL-LowRes
(promoted screen) a Retry/Cancel-Requester appears (if not suppressed).

If you specify the flag KILLF_DEATHMODE the multitasking will be turned
off. Now ROS has taken over the entire system. But interrupts and DMA
should only be set with ROS functions!!!
The blitter is owned via OwnBlitter() so you may use it. But before
using you should do a WaitBlit because it may still working.
You may interrupt the Death-Mode via

ROSSysCall()
. At this time the

blitter will be disowned so you do _not_ use it during a SysCall!!!

Call ROSKillSystem() with KILLF_SYSMODE to run your application within
multitasking. But be polite and bash the hardware as less as possible.
The blitter is under system control so you should use OwnBlitter()/
DisownBlitter() if you need it. But allocate the blitter only for a
short time because the system uses it too!

Also check out the ROS_KillSysFlags (the current ROS state).
You may call ROSKillSystem() multiple times to switch between Death-
and SysMode.

ros 16 / 33

A switch from Sys- into Death-Mode automatically makes the ROS screen
the frontmost so you don’t have to call

ROSScreenToFront()
.

You should return to the system with
ROSAwakeSystem()
.

Closing the ros.library calls
ROSAwakeSystem()
automatically.

INPUTS
mode - KILLF_SYSMODE for a multitasking environment

KILLF_DEATHMODE to take over the entire system

RESULT
success - FALSE if ROS was unable to open the screen

SEE ALSO

ROSAwakeSystem()
,
ROSSysCall()
,
ROSSysCallEnd()

1.20 ros.library/ROSQueryKeys()

NAME
ROSQueryKeys -- return the states for a set of keys

SYNOPSIS
ROSQueryKeys(queryArray, arraySize)

A0 D0

VOID ROSQueryKeys(struct KeyQuery *, UBYTE);

FUNCTION
Scans the keyboard to determine which of the rawkey codes
listed in the ’queryArray’ are currently pressed. The state for each
key is returned in the array.

The values returned by this function are not modified by which
window/screen currently has input focus.

INPUTS
queryArray - an array of KeyQuery structures. The kq_KeyCode fields

of these structures should be filled with the rawkey
codes you wish to query about. Upon return from this
function, the kq_Pressed field of these structures
will be set to TRUE if the associated key is down,
and FALSE if not.

ros 17 / 33

arraySize - number of key code entries in ’queryArray’

NOTE
This function is save to call from interrupts.

SEE ALSO
lowlevel.lib/QueryKeys(), libraries/lowlevel.i

1.21 ros.library/ROSReadExe()

NAME
ROSReadExe -- scatterload a loadable file

SYNOPSIS
seglist/errorcode = ROSReadExe(flags, name)
D0 D1 D0 A0

BPTR/ULONG ROSReadExe(ULONG, STRPTR);

FUNCTION
This function tries to scatterload the file ’name’ using DOS.library’s
LoadSeg().

If ROSRWF_DISKWAIT flag set the routine assumes that you want to load
’name’ from a floppy. This means:
- waiting for the disk to be inserted (can’t be cancelled!!!)

(implementation: DOS error codes DEVICE_NOT_MOUNTED, NOT_A_DOS_DISK,
NO_DISK force retry until any other error occurs)

- waiting until disk drive stopped
(implementation: polling disk.resource until drives are ready)

Since OS2.0 it’s possible to load files from your program path instead
of the current directory using PROGDIR:xxx.
On OS1.3 the "PROGDIR:" string is automatically removed by ROS so you
don’t have to worry about it. The only thing the user have to do is a
"CD" to the program directory before starting (only on OS1.3). ;-)

You should unload the file with
ROSFreeMem
(seglist)!

Do _not_ use DOS.library’s UnLoadSeg()!!!!!!!
Closing the ros.library unloads file automatically.

INPUTS
flags - use ROSRWF_DISKWAIT if you want to load from a floppy
name - pointer to a null-terminated string

RESULT
seglist - BCPL pointer to a seglist or NULL if error
errorcode - DOS error code on failure (may be NULL!!!)

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

ros 18 / 33

SEE ALSO

ROSFreeMem()
, DOS.lib/LoadSeg()

1.22 ros.library/ROSReadFile()

NAME
ROSReadFile -- read a number bytes from a file

SYNOPSIS
actLength/errorcode/actBuffer = ROSReadFile(flags, length, offset,
D0 D1 A0 D0 D1 D2

memtype, memalign, name, buffer)
D3 D4 A0 A1

ULONG/ULONG/VOID * ROSReadFile(ULONG, ULONG, ULONG,
ULONG, ULONG, STRPTR, VOID *);

FUNCTION
This function tries to load ’length’ bytes from the file ’name’ using
DOS.library’s Read(). Set ’length‘ = 0 to load the whole file.
A1 points to a buffer where the data should be placed, or set A1=0
to force an automatic memory allocation. In this case you must specify
’memtype’ and ’memalign’ (see also

ROSAllocMem()
).

If ROSRWF_DISKWAIT flag set the routine assumes that you want to load
’name’ from a floppy. This means:
- waiting for the disk to be inserted (can’t be cancelled!!!)

(implementation: DOS error codes DEVICE_NOT_MOUNTED, NOT_A_DOS_DISK,
NO_DISK force retry until any other error occurs)

- waiting until disk drive stopped
(implementation: polling disk.resource until drives are ready)

Since OS2.0 it’s possible to load files from your program path instead
of the current directory using PROGDIR:xxx.
On OS1.3 the "PROGDIR:" string is automatically removed by ROS so you
don’t have to worry about it. The only thing the user have to do is a
"CD" to the program directory before starting (only on OS1.3). ;-)

You should free the automatically allocated memory with
ROSFreeMem()
!

Closing the ros.library unloads file automatically (if automatic
memory allocation).

INPUTS
flags - use ROSRWF_DISKWAIT if you want to load from a floppy
length - number of bytes to load or NULL for the whole file
offset - number of bytes to skip before reading from file
memtype - see

ros 19 / 33

ROSAllocMem()
, only neccessary if ’buffer’ == NULL

memalign - see
ROSAllocMem()
, only neccessary if ’buffer’ == NULL

name - pointer to a null-terminated string
buffer - pointer to buffer or NULL to force an automitic memory

allocation

RESULT
actLength - number of bytes read from file or -1 if error
errorcode - DOS error code on failure (may be NULL!!!)
actBuffer - points to loaded data, only valid on success (D0 <> -1)!!!

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

SEE ALSO

ROSAllocMem()
,
ROSFreeMem()
, DOS.lib/Read()

1.23 ros.library/ROSRemTimerInt()

NAME
ROSRemTimerInt -- remove a previously installed timer interrupt

SYNOPSIS
ROSRemTimerInt(intHandle);

A1

VOID
AddTimerInt
(ULONG);

FUNCTION
Removes a timer interrupt routine previously installed with

ROSAddTimerInt()
.

Closing the ros.library removes this timer interrupt automatically.

INPUTS
intHandle - handle obtained from

ROSAddTimerInt()
, if NULL nothing

happens

NOTE

ros 20 / 33

This function interrupts the Death-Mode state with
ROSSysCall()
!

SEE ALSO

ROSAddTimerInt()
,
ROSStartTimer()
,
ROSStopTimer()
,
ROSSetTimerVec()

1.24 ros.library/ROSRequester()

NAME
ROSRequester -- Display a requester

SYNOPSIS
result = ROSRequester(TextFormat, ArgList, GadgetFormat)
D0 A0 A1 A2

LONG ROSRequester(STRPTR, APTR, STRPTR)

FUNCTION
This procedure automatically builds a requester for you using
intuition’s EasyRequestArgs() (AutoRequest() on OS1.3) and then
waits for a response from the user.

The requester appears only if it is not disabled via
ROSDisableReq()

or your tasks pr_WindowPtr = -1.
Do not set this pointer directly. Use instead ROSDisable()/ROSEnable().
By default requesters are enabled.

In Death-Mode requesters are always disabled.
If requesters are disabled the ’result’ will be always FALSE (NULL).

INPUTS
TextFormat - Format string, a la RawDoFmt(), for message in

requester body. Lines are separated by the newline character ($0A).
Formatting ’%’ functions are supported exactly as in RawDoFmt().
Note: on OS1.3 max 5 textlines

GadgetFormat - Format string for gadgets. Text for separate
gadgets is separated by ’|’. You MUST specify at least one gadget.
Note: max 2 gadgets on OS1.3

gadget format functions only supported on OS2.0+.
argList - Arguments for format commands. Arguments for gadgets

follow arguments for bodytext

RESULT
0, 1, ..., N - Successive GadgetID values, for the gadgets

you specify for the requester. NOTE: The numbering

ros 21 / 33

from left to right is actually: 1, 2, ..., N, 0.
This is for compatibility with AutoRequest(), which has
FALSE for the rightmost gadget.

BUGS
Do not rely on the ’result’ of an one-button requester!
Due a bug in intuitions AutoRequest()/EasyRequestArgs() the ’result’
may be TRUE (1) or FALSE (0) because it’s possible to satisfy an one-
button requester with both short-cuts: AMIGA-B and AMIGA-V.

SEE ALSO
intuition.lib/AutoRequest(), intuition.lib/EasyRequestArgs(),
exec.lib/RawDoFmt(),

ROSDisableReq()
,
ROSEnableReq()

1.25 ros.library/ROSScreenToBack()

NAME
ROSScreenToBack -- Send ROS screen to the back of the display

SYNOPSIS
ROSScreenToBack()

VOID ROSScreenToBack(VOID);

FUNCTION
Sends the ROS screen to the back of the display if it is open and
if _not_ in Death-Mode.

SEE ALSO

ROSScreenToFront()

1.26 ros.library/ROSScreenToFront()

NAME
ROSScreenToFront -- Make ROS screen the frontmost

SYNOPSIS
ROSScreenToFront()

VOID ROSScreenToFront(VOID);

FUNCTION
Brings the ROS screen to the front of the display if it is open and
if _not_ in Death-Mode.

SEE ALSO

ros 22 / 33

ROSScreenToBack()

1.27 ros.library/ROSSetCache()

NAME
ROSSetCache - Instruction & data cache control

SYNOPSIS
oldBits = ROSSetCache(cacheBits, cacheMask)
D0 D0 D1

ULONG ROSSetCache(ULONG, ULONG);

FUNCTION
This function provides global control of any instruction or data
caches that may be connected to the system. All settings are
global (until ros.library closed) -- per task control is not provided.

Closing the ros.library reset former system cache settings.

INPUTS
cacheBits - new values for the bits specified in cacheMask.

use -1 to reset to system defaults (ignores cacheMask)
cacheMask - a mask with ones for all bits to be changed

Note: cacheBits/cacheMask may be overridden by values specified in
ROS.prefs (to support individual cache settings)

RESULT
oldBits - the complete prior values for all settings.

NOTE
As a side effect, this function clears all caches.
This function interrupts the Death-Mode state with

ROSSysCall()
!

SEE ALSO
exec/execbase.i, exec.lib/CacheControl()

1.28 ros.library/ROSSetCopper()

NAME
ROSSetCopper -- install copperlist for ROS screen

SYNOPSIS
ROSSetCopper(flags, coplist)

D0 A0

ros 23 / 33

VOID ROSSetCopper(ULONG, APTR);

FUNCTION
This function installs a new copper list for our ROS screen.
Whenever this screen is the frontmost this copper list becomes the
active.

Do _not_ use "move.l #mycoplist,$dff080" or "move.w #0,$dff088" !!!!!!!
This may crash the display if you are in Non-Death-Mode and the ROS
screen is not yet available or behind others.
ROSSetCopper() takes this into account and displays this copper list as
soon as possible.

A screen switch forces always copper1 starting in a long frame!

INPUTS
flags - COPF_COPPER1/2: modify copper1 or copper2

Remember: copper1 is always started during vertical blank
COPF_STROBE: force an immediate copper start, move.w #0,$dff088

set ’coplist’ to NULL for only strobe
COPF_LOF/SHF: forces a long/short frame while starting copper

(to display interlaced screens correctly)
coplist - copper list pointer, if NULL the old copper pointer remains

NOTE
This call is guaranteed to preserve all registers (except D0!!!) and is
save to call from interrupts.

SEE ALSO
libraries/ros.i,

ROSKillSystem()

1.29 ros.library/ROSSetDMA()

NAME
ROSSetDMA -- modify DMA bits

SYNOPSIS
ROSSetDMA(DMACON)

D0

ROSSetDMA(UWORD);

FUNCTION
This function acts like a write to the DMACON register.

Do _not_ use "move.w #xxx,$dff096" !!!!!!!
This may interfere with the system you are in Non-Death-Mode, but
ROSSetDMA() handles all exceptions correctly.

DMA bit modification:
- DMAF_BLTPRI: only in Death-Mode, but during a

ROSSysCall()
the

ros 24 / 33

system DMA bit will be restored
- DMAF_DMAEN: same like BLTPRI
- DMAF_BPLEN: only if ROS screen in front
- DMAF_COPEN: same like BPLEN
- DMAF_BLTEN: same like BLTPRI
- DMAF_SPREN: same like BPLEN
- DMAF_DSKEN: never modified!!!
- DMAF_AUDxEN: only if audio channels allocated

A currently forbidden DMA modification is automatically updated as
soon as possible (e.g. bitplane DMA if ROS screen behind others).

Closing the ros.library reset former system DMA.

INPUTS
DMACON - DMA bits

NOTE
This call is guaranteed to preserve all registers (except D0!!!) and is
save to call from interrupts.

SEE ALSO

ROSGetDMA()
, hardware/dmabits.i

1.30 ros.library/ROSSetExitHandler()

NAME
ROSSetExitHandler -- add handler that is executed at exit key condition

SYNOPSIS
ROSSetExitHandler(handler);

A0

ROSSetExitHandler(APTR);

FUNCTION
Calling this routine causes the ROS to install an exit key conditon
handler. Whenever this special key is pressed your handler is invoked
(should be only once). Now it’s time to finish your application.

The routine is called from within an interrupt, so normal
restrictions apply. On entry A5 holds the custom base ($dff000) and
A6 holds _ROSBase. Your code may trash all registers.

The default exit key code is SHIFT ESC but may be changed in ROS.prefs.

You should remove this handler with ROSSetExitHandler(NULL).
Closing the ros.library removes this timer interrupt automatically.

INPUTS
handler - the routine to invoke upon exit key condition or NULL to

ros 25 / 33

detach the handler

NOTE
This call is guaranteed to preserve all registers (except A0!!!) and is
save to call from interrupts.

The handler may be called more than once if your application isn’t
fast enough to exit!!!

SEE ALSO

1.31 ros.library/ROSSetInt()

NAME
ROSSetInt -- modify interrupt settings

SYNOPSIS
ROSSetInt(INTENA)

D0

ROSSetInt(UWORD);

FUNCTION
This function acts like a write to the INTENA register.

Do _not_ use "move.w #xxx,$dff09a" !!!!!!!
This may interfere with the system you are in Non-Death-Mode, but
ROSSetInt() handles all exceptions correctly.

Only those bits are affected which belongs to previous
ROSSetIntVec()

calls. Look at
ROSSetIntVec()
for further information.

In Non-Death-Mode the master interrupt bit (INTB_INTEN) is emulated to
support enable/disable of all ROS interrupts at once (system interrupts
are still active!!!)

Closing the ros.library reset former system interrupt bits.

INPUTS
INTENA - Int bits

Note: level 1/2/5/6 bits (disk, serial, timer) are not
supported!!!
Instead additonal bits are defined: - KEYB

- CIAATIMA/B
- CIABTIMA/B

Look at
ROSSetIntVec()
for further details

NOTE
This call is guaranteed to preserve all registers (except D0!!!).

Do _not_ call this routine from interrupts if you want to modify the

ros 26 / 33

CIA interrupts (CIAATIMA/B, CIABTIMA/B)!!!!

SEE ALSO

ROSGetInt()
,
ROSSetIntVec()
, libraries/ros.i

1.32 ros.library/ROSSetIntVec()

NAME
ROSSetIntVec -- set a new handler for an interrupt vector

SYNOPSIS
success = ROSSetIntVec(intNum, handler)
D0 D0 A0

BOOL ROSSetIntVec(UWORD, APTR);

FUNCTION
This function attaches a new handler to the interrupt specified with
’intNum’. Detach a handler with A0 = NULL.
The routine is called from within an interrupt, so normal
restrictions apply. On entry A5 holds the custom base ($dff000) and
A6 holds _ROSBase. Your code may trash all registers.
Your handler won’t be invoked until you enable it (and the master int)
via

ROSSetInt()
. After enabling your handler it’s always invoked

whether you taken over the systen or not.

Interrupts are executed as follows:

» INTB_BLIT
- only in Death-Mode, during a

ROSSysCall()
the system routine

will be restored so you do _not_ use the blitter while the system
is (partially) active

- returncode is always TRUE
» INTB_VERTB

- always invoked, also without a call to
ROSKillSystem()

- in Non-Death-Mode your vblank code may be called ←↩
after display

is started depending on the speed of higher prioritized vblank
interrupts. If you want to synchronize custom chip modifications
with the display you should use the copper.

- but remember: in Non-Death-Mode the vblank frequency may vary
(not always 50Hz) if ROS screen behind others!

- returncode is always TRUE
» INTB_COPER

- only if ROS screen in front

ros 27 / 33

- returncode is always TRUE
» INTB_NMI (bit 15)

- always invoked
- returncode is always TRUE

» INTB_AUD0..3
- only if channels allocated, else the returncode will be FALSE

Further 5 new int definitions are supported:

» INTB_CIAATIMA/CIAATIMB/CIABTIMA/CIABTIMB
- used to attach a handler to the specified CIA timer
- returncode may be FALSE if CIA allocation failed, in this case a

Retry/Cancel-Requester appears (if not suppressed)
- if returncode TRUE the specified timer bits are set to 0 (timer

stopped) and now you may modify the contents of the CIA control
register (CRA/CRB)

- never read or write the CIA interrupt control register (ICR),
use instead

ROSSetInt()
to enable/disble CIA interrupts!!!!!!

» INTB_KEYB
- used to track keyboard events (see also

ROSGetKey()
)

- only invoked if ROS screen in front!!!
- your handler is called with additional register D0 setup:

* the lower word contains the keycode ($0..$67) with the
additional key_up/down flag (bit7 set for key-up condition)

* the upper word contains the qualifier bits (shift, alt, ...)
- in Non-Death-Mode it’s up to you passing this key to other system

components (like intuition.lib, commodities.lib, ...)

* set the ZERO-flag at the end of your handler to pass the key
to other system components, e.g. moveq #0,d0

* else clear the ZERO-flag, e.g. moveq #1,d0

* but remember: if you catch all key events screen switching
and other system hotkeys dosn’t work!!!

* by default all keys without left-amiga or without control
qualifiers are catched to prevent background menu activities
and other undesirable things

- returncode is always TRUE

All other interrupt bits are _not_ supported!!!

Closing the ros.library detaches interrupt handlers automatically.

INPUTS
intnum - the Paula interrupt bit number (0 through 14). Processor

level seven interrupts (NMI) are encoded as intNum 15.
Note: level 1/2/5/6 bits (disk, serial, timer) are not

supported!!!
Instead additonal bits are defined: - KEYB

- CIAATIMA/B
- CIABTIMA/B

handler - the routine to invoke or NULL to detach the handler

RESULT

ros 28 / 33

success - TRUE if handler successfully attached

NOTE
This call is guaranteed to preserve all other registers.

Do _not_ call this routine from interrupts if you want to add a CIA
handler for the first time!!! After a successful call you may change
this vector with ROSSetIntVec() also from interrupts because the
desired CIA is already allocated.

SEE ALSO

ROSSetInt()
,
ROSGetInt()
, libraries/ros.i

1.33 ros.library/ROSSetTimerVec()

NAME
ROSSetTimerVec -- change the timer interrupt entry point

SYNOPSIS
ROSSetTimerVec(intRoutine, intHandle);

A0 A1

VOID ROSSetTimerVec(APTR, ULONG);

FUNCTION
This routine changes the interrupt entry point that is assocatied with
a timer interrupt created by

ROSAddTimerInt()
.

No timer modification is done (no restart, no stop). The next interrupt
will execute your new ’intRoutine’.

INPUTS
intRoutine - the routine to invoke upon timer interrupts.
intHandle - handle obtained from

ROSAddTimerInt()
.

NOTE
This call is guaranteed to preserve all registers (except A1!!!) and is
save to call from interrupts.

SEE ALSO

ROSAddTimerInt()
,
ROSRemTimerInt()
,
ROSStartTimer()
,

ros 29 / 33

ROSStopTimer()

1.34 ros.library/ROSStartTimer()

NAME
ROSStartTimer -- start the timer associated with the timer interrupt

SYNOPSIS
ROSStartTimer(timeInterval, continuous, intHandle);

D0 D1 A1

VOID ROSStartTimer(ULONG, BOOL, ULONG);

FUNCTION
This routine starts a stopped timer that is assocatied with a
timer interrupt created by

ROSAddTimerInt()
.

INPUTS
timeInterval - number of micoseconds between interrupts. The

maximum value allowed is 90,000. If higher values
are passed there will be unexpected results.

continuous - FALSE for a one shot interrupt. TRUE for multiple
interrupts.

intHandle - handle obtained from
ROSAddTimerInt()
.

NOTE
This call is guaranteed to preserve register A0 and is save to call
from interrupts.

SEE ALSO

ROSAddTimerInt()
,
ROSRemTimerInt()
,
ROSSetTimerVec()
,
ROSStopTimer()

1.35 ros.library/ROSStopTimer()

NAME
ROSStopTimer -- stop the timer associated with the timer interrupt

SYNOPSIS
ROSStopTimer(intHandle);

ros 30 / 33

A1

VOID ROSStopTimer(ULONG);

FUNCTION
Stops the timer associated with the timer interrupt handle passed.
This is used to stop a continuous timer started by

ROSStartTimer()
.

INPUTS
intHandle - handle obtained from

ROSAddTimerInt()
NOTE

This call is guaranteed to preserve all registers (except A1!!!) and is
save to call from interrupts.

SEE ALSO

ROSAddTimerInt()
,
ROSRemTimerInt()
,
ROSSetTimerVec()
,
ROSStartTimer()

1.36 ros.library/ROSSysCall()

NAME
ROSSysCall -- interrupts Death-Mode to enable system calls

SYNOPSIS
ROSSysCall()

VOID ROSSysCall(VOID)

FUNCTION
This function provides a method to call system functions from within
Death-Mode.

YOU SHOULD NEVER NEED THIS FUNCTION! IT SHOULD BE A PRIVATE ROS CALL.
DO NOT USE THIS CALL WITHOUT GOOD JUSTIFICATION.

In order to restore normal Death-Mode, the programmer must execute
exactly one call to

ROSSysCallEnd()
for every call to ROSSysCall().

During a SysCall all ROS interrupts continue executing (look at

ROSSetIntVec()
for details).

ros 31 / 33

But remember: system interrupts are also active and additional system
DMA will be set!
The blitter will be disowned so you do _not_ bash the blitter until

ROSSysCallEnd()
is called.

Do _not_ call system functions during a SysCall which may cause any
visual modifications (like OpenScreen(), ScreenToBack(), ...).
These functions will never return as long as the Death-Mode is the
active one!!!

Calling ROSSysCall() without a Death-Mode killed system is harmless.

RESULT
A partially active system.

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO

ROSKillSystem()
,
ROSSetDMA()
,
ROSSetIntVec()
,
ROSSysCallEnd()

1.37 ros.library/ROSSysCallEnd()

NAME
ROSSysCallEnd -- return from a SysCall

SYNOPSIS
ROSSysCallEnd()

VOID ROSSysCallEnd(VOID)

FUNCTION
Call this function to return from a SysCall after a matching

ROSSysCall()
has been executed.

RESULT
A Death-Mode killed system.

NOTE
This call is guaranteed to preserve all registers.

SEE ALSO

ROSSysCall()

ros 32 / 33

1.38 ros.library/ROSWaitVBlank()

NAME
ROSWaitVBlank -- Wait for the vertical blank to occur

SYNOPSIS
ROSWaitVBlank()

VOID ROSWaitVBlank(VOID);

FUNCTION
Waits for vertical blank to occur and than returns to the caller.

NOTE
This call is guaranteed to preserve all registers and is save to call
from interrupts.
This call does not require A6 to be loaded with the library base.

BUGS
Currently this routine polls the VPOSR register so you should only use
this call if the ROS screen is the frontmost.
It doesn’t work while displaying a ’foreign’ screen on a graphics board.

1.39 ros.library/ROSWriteFile()

NAME
ROSWriteFile -- Write a number bytes to a file

SYNOPSIS
actLength/errorcode = ROSWriteFile(flags, length, offset, name, buffer)
D0 D1 D0 D1 D2 A0 A1

ULONG/ULONG ROSWriteFile(ULONG, ULONG, ULONG, STRPTR, VOID *);

FUNCTION
This function writes ’length’ bytes to the file ’name’ using
DOS.library’s Write().
Set ’offset’ to NULL to overwrite an existing file (file opened with
MODE_NEWFILE). In the other case the data is written to the file ’name’
with an ’offset’ from the beginning (file opened with MODE_READWRITE).
This can be used to append/replace data to/in an existing file. If the
file doesn’t exists or if filelength shorter than ’offset’ a seek error
occurs.
A1 points to a buffer from where the data is taken from.

Remember: On error a corrupt or a 0-byte-file may still exists!!!
It’s up to you to delete this.

If ROSRWF_DISKWAIT flag set the routine assumes that you want to write

ros 33 / 33

’name’ to a floppy. This means:
- waiting for the disk to be inserted (can’t be cancelled!!!)

(implementation: DOS error codes DEVICE_NOT_MOUNTED, NOT_A_DOS_DISK,
NO_DISK force retry until any other error occurs)

- waiting until disk drive stopped
(implementation: polling disk.resource until drives are ready)

Since OS2.0 it’s possible to write files to your program path instead
of the current directory using PROGDIR:xxx.
On OS1.3 the "PROGDIR:" string is automatically removed by ROS so you
don’t have to worry about it. The only thing the user have to do is a
"CD" to the program directory before starting (only on OS1.3). ;-)

WARNING: It may be dangerous to use this routine within Death-Mode!
Because of the AMIGA’s multitasking facilities it isn’t
possible (isn’t it???) to wait till the final end of a write
operation. That’s why I use a simple delay of 2 seconds after
any write operation in Death-Mode. If your filesystem is to
slow to write all the data within this time your partition
will be _not_ validated!!!
You’ve been warned!!!

INPUTS
flags - use ROSRWF_DISKWAIT if you want to write to a floppy
length - number of bytes to write
offset - NULL for overwrite mode, else a number of bytes to skip

before writing into an existing file
name - pointer to a null-terminated string
buffer - pointer to buffer where data is taken from

RESULT
actLength - number of bytes written or -1 if error
errorcode - DOS error code on failure (may be NULL!!!)

NOTE
This function interrupts the Death-Mode state with

ROSSysCall()
!

SEE ALSO
DOS.lib/Write(),

ROSDeleteFile()

	ros
	ros.doc
	ros.library/Overview (information)
	ros.library/History (information)
	ros.library/ROSAddTimerInt()
	ros.library/ROSAllocAudio()
	ros.library/ROSAllocMem()
	ros.library/ROSAwakeSystem()
	ros.library/ROSChipsetCheck()
	ros.library/ROSCPUCheck()
	ros.library/ROSCPUClock()
	ros.library/ROSDeleteFile()
	ros.library/ROSDisableReq()
	ros.library/ROSEnableReq()
	ros.library/ROSFreeAudio()
	ros.library/ROSFreeMem()
	ros.library/ROSGetDMA()
	ros.library/ROSGetInt()
	ros.library/ROSGetKey()
	ros.library/ROSKillSystem()
	ros.library/ROSQueryKeys()
	ros.library/ROSReadExe()
	ros.library/ROSReadFile()
	ros.library/ROSRemTimerInt()
	ros.library/ROSRequester()
	ros.library/ROSScreenToBack()
	ros.library/ROSScreenToFront()
	ros.library/ROSSetCache()
	ros.library/ROSSetCopper()
	ros.library/ROSSetDMA()
	ros.library/ROSSetExitHandler()
	ros.library/ROSSetInt()
	ros.library/ROSSetIntVec()
	ros.library/ROSSetTimerVec()
	ros.library/ROSStartTimer()
	ros.library/ROSStopTimer()
	ros.library/ROSSysCall()
	ros.library/ROSSysCallEnd()
	ros.library/ROSWaitVBlank()
	ros.library/ROSWriteFile()

